QSAR models to predict effect of ionic strength on sorption of chlorinated benzenes and phenols at sediment-water interface.

نویسندگان

  • B H Rao
  • S R Asolekar
چکیده

It is hypothesised that the experimental sorption coefficient normalised to the organic carbon fraction of sediment (K(oc)exp) for non-ionic, hydrophobic, organic pollutant depends upon the molecular properties as well as background ionic strength of the aquatic system. The utility of this concept has been demonstrated by incorporating ionic strength as a parameter in the three quantitative structure activity relationships (QSARs) namely octanol-water partitioning coefficient model (Kow model), the linear solvation energy model (LSE model), and molecular connectivity indices theory (MCI model). Four chlorinated benzenes and two chlorinated phenols were employed in the present study. Sorption experiments using sediment from the Patalganga River were conducted in laboratory (bottle point method) at different ionic strengths (viz. 0.01, 0.05, and 0.10 M). The K(oc)cat values predicted using Kow model incorporating ionic strength compare reasonably well with the K(oc)exp values (r2 = 0.60 and standard error of estimator i.e. SEE = 0.35). The LSE model incorporating ionic strength too, was found to be equally good (r2 = 0.67, SEE = 0.33). An attempt has also been made to validate the QSARs developed in the present study utilising the sorption parameters experimentally measured by Dewulf et al. (1996) (Water Res. 30, 3130-3138) for sorption of toluene, ethylbenzenes, and xylenes onto the sediments from Belgian Continental Shelf and North Sea, as well as Mader et al. (1997) (Environ. Sci. Technol. 27, 1524-1531) for sorption of di-, tri-, tetra chlorobenzenes on pure mineral oxides namely Al2O3 and Fe2O3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilines and phenols.

Based on descriptors of n-octanol/water partition coefficients (logKow), molecular connectivity indices, and quantum chemical parameters, several QSAR models were built to estimate the soil sorption coefficients (logKoc) of substituted anilines and phenols. Results showed that descriptor logKow plus molecular quantum chemical parameters gave poor regression models. Further study was performed t...

متن کامل

Sorption of Hydrophobic Pollutants on Natural Sediments

Ahtract--The sorption of hydrophobic compounds (aromatic hydrocarbons and chlorinated hydrocarbons) spanning a concentration range in water solubility from 500 parts per trillion (ppt) to 1800 parts per million (ppm) on local (North Georgia) pond and river sediments was investigated. The sorption isotherms were linear over a broad range of aqueous phase pollutant concentrations. The linear part...

متن کامل

A new approach to predict of mechanical properties at the interface of Aluminium/Copper explosive cladding by explosive scarf welding

Abstract: The purpose of this study is to produce scarf joint through explosive welding process (EXW). The scarf weld is a process in which the final bond interface is oblique. With applying the explosive welding technique, this joint can create a metallic bond between similar or dissimilar metals. In this study, chamfered end of aluminum and copper plates were joined explosively and named scar...

متن کامل

Quantitative modeling of soil sorption for xenobiotic chemicals.

Experimentally determining soil sorption behavior of xenobiotic chemicals during the last 10 years has been costly, time-consuming, and very tedious. Since an estimated 100,000 chemicals are currently in common use and new chemicals are registered at a rate of 1000 per year, it is obvious that our human and material resources are insufficient to experimentally obtain their soil sorption data. M...

متن کامل

A cation exchange model to describe Cs+ sorption at high ionic strength in subsurface sediments at Hanford site, USA.

A theoretical and experimental study of cation exchange in high ionic strength electrolytes was performed using pristine subsurface sediments from the U.S. Department of Energy Hanford site. These sediments are representative of the site contaminated sediments impacted by release of high level waste (HLW) solutions containing 137Cs+ in NaNO3 brine. The binary exchange behavior of Cs+-Na+, Cs+-K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water research

دوره 35 14  شماره 

صفحات  -

تاریخ انتشار 2001